The paper presents the results of measurements of flow parameters behind the last stage of a 1090 MW nominal power steam turbine in a nuclear power plant. The results were obtained by traversing a pneumatic probe at a distance of about 100 mm from the trailing edges of the LSB (Last Stage Blade). Furthermore, both side walls as well as the front wall of one flow of the LP (Low Pressure) exhaust hood were fitted with a dense net of static pressure taps at the level of the flange of the turbine. A total of 26 static pressures were measured on the wall at the output from the LP exhaust hood. Another 14 pressures were measured at the output from the condenser neck. The distribution of static pressures in both cross sections for full power and 600 and 800 MW power is shown. Another experiment was measured pressure and angle distribution using a ball pneumatic probe in the condenser neck area in a total of four holes at a distance up to 5 metres from the neck wall.
The turbine condenser is two-flow design. In one direction perpendicular to the axis of the turbine cold cooling water comes, it heats partially. It then reverses and it heats to the maximum temperature again. The different temperature of cooling water in the different parts of the output cross section should influence the distribution of the output static pressure. Differences in pressures may cause problems with uneven load of the tube bundles of the condenser as well as problems with defining the influential edge output condition in CFD simulations of the flow of the cold end of the steam turbine. Due to these reasons an extensive 3D CFD computation, which includes one stator blade as well as all moving blades of the last stage, a complete diffuser, the exhaust hood and the condenser neck, has been carried out. Geometry includes all reinforcing elements, pipes and heaters which could influence the flow behaviour in the exhaust hood and its pressure loss. Inlet boundary conditions were assumed for the case of both computations from the measurement of the flow field behind the penultimate stage. The outlet boundary condition was defined in the first case by an uneven value of the static pressure determined by the change of the temperature of cooling water. In the second case the boundary condition in accordance with the measurement was defined by a constant value of the static pressure along all the cross section of the output from the condenser neck. Results of both CFD computations are compared with experimental measurement by the distribution of pressures and other parameters behind the last stage.
Full text